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A nonstationary method for measuring heat fluxes using a hollow cylindrical probe placed in
the critical cross section of a nozzle is proposed. The temperature at a fixed distance from
the inner surface of the probe is measured as a function of time. The time variation of the
heat flux is determined by solving the one-dimensional nonlinear heat-conduction equation,

The most widely used nonstationary method for determining heat fluxes is the calorimeter method
with a linear characteristic. Inthis method a uniform heat flux enters the front face of a probe in the
form of a finite-sized plate with thermally insulated side and rear surfaces. By measuring the tempera-
ture of the rear surface which varies linearly with time the heat-flux density can be determined [1, 2], The
heat flux ean also be determined by solving the one-dimensional linear nonstationary heat-conduction prob-
lem for a probe of specific configuration [3], More accurate results which can be used to analyze the na-
ture of heat transfer between a high-temperature gaseous medium and the surface of the probe can be ob-
tained by solving the one-dimensional nonlinear nonstationary heat-conduction equation, This method is
particularly suitable for high heat fluxes when the thermophysical properties of the probe are strongly
temperature dependent,

We have measured the heat flux in the critical cross section of a nozzle through which a high-tem-
perature gas is flowing. A cylindrical copper washer placed in the critical cross section of the nozzle and
thermally insulated from the rest of the nozzle was used as a probe, The temperature at a fixed distance
from the inner surface of the probe was measured as:a function of the time. By solving the one-dimen-
sional nonlinear heat-conduction equation the time variation of the heat flux was determined.

Figure 1 shows a schematic diagram of the probe. Thermocouple 1 in the side wall of the copper
washer measures the temperature at a fixed distance from the inner surface of the probe. Thermocouple
2 is a monitor. The thermocouple readings as a function of time were recorded on a type N-700 loop os-
cillograph, TFigure 2 shows the temperature as a function of time at a distance of 0.5 mm from the inner
surface of the probe (curve 1) and on the rear surface (curve 2),

The method developed for determining the heat flux is based on the solution of the nonlinear heat-
conduction equation
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It is assumed that the specific heat and thermal conductivity are functions of the temperature.
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Fig. 1. Schematic diagram of probe for measuring heat fluxes. 1)
Location of thermocouple in side wall of probe; 2) monitoring thermo-
couple.

Fig. 2. Time variation of probe temperature: 1) temperature at 0.5
mm from the inner surface of the probe; 2) temperature of rear sur-
face of probe. T in°C and 7 in sec.

To obtain the temperature distribution corresponding to the solution of Eqs, (1)~{4) we consider the
following expressions:
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Differentiating Eqs. (5)-(7) once with respect to 1 and twice with respect to r and rearranging, we
obtain
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After differentiating Eqgs. (10) and (11), respectively, once with respect to T and twice with respect
to r and replacing 8, by ®;, we can write Eq. (10) in the form
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It was calculated in [4] that linear heat-conduction equations higher than second-order ensure the
determination of the temperature distribution to an accuracy sufficient for practical purposes.

Consequently, it can be assumed that
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Then from (12) it follows directly that

N ’ P ot L2 ( %)
7 o [\ )] a4)

\ p ot T )
B S—— Since six boundary conditions are required to solve Eq. (13) we deter-
¢ 6 T mined the heat flux in our case by using Eq. (14) which does not require

specifying boundary conditions within the interval Ry, R,).

Fig. 3. Time dependence

of heat flux: 1) in the crit- Solving Eq. (14) by using the Laplace transform with boundary con-
ical cross section of the ditions of the form
nozzle, q is in kW/ cm?
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In obtaining the solution (19) we limited ourselves to the first derivative of y(r), We assume that higher-
order derivatives are negligibly small,

The heat flux entering the surface is given by
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Curve 1 of Fig. 3 shows the time dependence of the heat flux at r = Ry~-A. The graph shows that
after 0.4 sec a stationary heat flux of the order of 2.4 kW/ cm? is established.

Thus it follows from the data obtained that using the solution of the nonlinear nonstationary heat-
conduction equation to determine heat fluxes gives a unique answer indicating the nature of the heat trans-
fer between the gaseous medium and the surface of the probe, '

The use of the linear equation in this case would introduce an error into the estimate of the heat
flux, since the thermophysical properties of the probe are temperature dependent.
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